model { for(i in 1:N){ mu_M1[i,1] <- 1 #baseline is the 1st category mu_M1[i,2] <- exp(alpha1*x[i]) mu_M1[i,3] <- exp(alpha2*x[i]) sum_M[i] <-mu_M1[i,1]+mu_M1[i,2]+mu_M1[i,3] for (k in 1:3) {mu_M[i,k] <- mu_M1[i,k]/sum_M[i]} M[i]~dcat(mu_M[i,]) mu_y[i] <-c*x[i]+beta1*equals(M[i],2)+beta2*equals(M[i],3) y[i] ~ dnorm(mu_y[i],prec2) mu_y1[i]<- c*(x[i]+deltax)+beta1*equals(M[i],2)+beta2*equals(M[i],3) de[i]<-(mu_y1[i]-mu_y[i])/deltax mu_M1.2[i,1] <- 1 #baseline is the 1st category mu_M1.2[i,2] <- exp(alpha1*(x[i]+deltax)) mu_M1.2[i,3] <- exp(alpha2*(x[i]+deltax)) sum_M.2[i] <-mu_M1.2[i,1]+mu_M1.2[i,2]+mu_M1.2[i,3] for (k in 1:3) {mu_M.2[i,k] <- mu_M1.2[i,k]/sum_M.2[i]} mu_y2[i]<- c*x[i] mu_y3[i]<- c*x[i]+beta1 mu_y4[i]<- c*x[i]+beta2 ie1[i]<-(mu_M.2[i,2]-mu_M[i,2])/deltax*(mu_y3[i]-mu_y2[i])/deltam1 ie2[i]<-(mu_M.2[i,3]-mu_M[i,3])/deltax*(mu_y4[i]-mu_y2[i])/deltam2 ie[i]<-ie1[i]+ie2[i] te[i]<-ie[i]+de[i] } alpha1 ~ dnorm(0.0,0.01) alpha2 ~ dnorm(0.0,0.01) beta1 ~ dnorm(0.0,0.000001) beta2 ~ dnorm(0.0,0.000001) c ~ dnorm(0.0,0.001) var2 ~ dgamma(1,0.1) prec2 <-1/var2 }